A cross-road of genetic predisposition of lupus nephritis and IgA nephropathy

Hong Zhang

Renal Division, Peking University First Hospital; Peking University Institute of Nephrology Beijing

GN is the leading cause of ESKD in China

- IgA nephropathy (IgAN) is the most common Primary GN in China.
- Lupus nephritis (LN) is the most common form of secondary GN in China.
- Common causative diseases for ESKD in young adults.

Renal Data System. USRDS

Dialysis Registration. China.

Disease composition of renal biopsy patients (5398)

Zhou FD, et al. NDT. 2009, 2009,4(3):870-6. Ly JC, Zhang H, et al. Nephrology 2008,9(2):221

Genome-wide association studies (GWAS) in SLE and IgA nephropathy

 Recent genome-wide association studies (GWAS) have identified multiple susceptibility loci for IgAN and systemic lupus erythematosus.

Manhattan Plot on the Meta-analysis Results of the Two SLE GWASs on Two Chinese Populations in Hong Kong and Anhui, China

Advanced approaches of genetics in complex diseases

(SNP array vs. sequencing)

Seldin MF. J Autoimmun. 2015;64:1-12.

Alephrology Petrino University Restriction Hardware Restriction Hardware Ha

Shared genetics in immune-related diseases

Different complex diseases share common risk bases, i.e., pleiotropy

Trends Immunol. 2013;34(1):22-6.

Concomitance of chronic inflammatory and autoimmune diseases

Table 2 | Concomitance of chronic inflammatory and autoimmune diseases

Disease	Other diseases seen in patients	Familiar clustering	Refs
Ankylosing spondylitis	Ulcerative colitis (5%), Crohn's disease (3%), psoriasis (16%)	IBD* (7%), psoriasis (10%)	94
Asthma	Crohn's disease, ulcerative colitis	ND	95
AIT disease (including Graves' and Hashimoto's disease)	Rheumatoid arthritis (1.4 + 17.6%), T1D (3 + 15%), coeliac disease (5.4%)	ND	4,96
Coeliac disease	Asthma (24.6%), SLE (2.4%), AIT (5%), T1D (5%), psoriasis	ND	97 -9 9
Crohn's disease	Rheumatoid arthritis (1.7 + 1.6%), asthma (7.1 + 13.0%), psoriasis (1.7 + 1.9%), coeliac disease (19%), multiple sclerosis (0.4%)	Psoriasis (10%)	95,100 -102
Multiple sclerosis	AIT (0.5 -3.9%), psoriasis (6%), IBD (3%)*, rheumatoid arthritis (0.35 -2.4%), T1D (0 -2.6%)	AIT (10%), psoriasis (6%), IBD (3%)*, rheumatoid arthritis (2%)	4
Psoriasis	Crohn's disease, ulcerative colitis, coeliac disease	ND	95
Rheumatoid arthritis	Asthma (10.0%), T1D (0.3–6%), AIT (0.5–9.8%)	AIT (2.1%), T1D (0.44), SLE (0.36%), multiple sclerosis (0.29%)	4,85,99
SLE	Diabetes mellitus (11.6%)	ND	103
T1D	Coeliac disease (4–9%), AIT (0–24%), asthma (5%), rheumatoid arthritis (2%)	Coeliac disease (6%), AIT (8%) (2.7%), rheumatoid arthritis (0.97%)	4,99,104, 105
Ulcerative colitis	Rheumatoid arthritis (1.1 + 1.6%), asthma (7.9 + 12.0%), psoriasis (1.7 + 1.8%), multiple sclerosis (0.4 + 0.54%)	ND	95,102

*No discrimination made between Crohn's disease and ulcerative colitis. AIT, autoimmune thyroid disease; IBD, inflammatory bowel disease; ND, not determined; SLE, systemic lupus erythematosus; T1D, type 1 diabetes.

A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases

Ramos PS, et al. PLoS Genet. 2011;7(12):e1002406.

Kiryluk K, et al. Nat Genet<u>.</u> 2014;46(11):1187-96.

Pleiotropic effects of IgAN GWAS loci

- * LN: no specific GWAS conducted for LN in the strict sense.
- Pleiotropy: no available study conducted in a given population.
- Complex diseases: rigid significance p value in GWAS may obscure identification of genes/pathways shared between diseases

What loci/genes were shared or specific for IgAN and LN in Chinese?

Similarity between IgAN and LN

- Geography: higher prevalence among Asians;
- Immune-mediated disease:

circulating immune complexes;

- Clinical manifestation: chronic course; renal involvement;
- Pathological findings: morphological similarities;
- SKD common pathways:

inflammation, complement activation; RAAS

Co-occurrences: SLE with IgAN

Significance

- Shared gene/pathway:
 - Similar pathogenesis
 - Same target—refined therapy for different forms of glomerulonephritis

Eculizumab: aHUS, DDD, C3 glomerulonephritis

- Specific gene/pathway:
 - Different pathogenesis
 - Targeted therapy-- less adverse effect
 - Glucocorticosteroid, immunosuppressant

Parkes M, et al. Nat Rev Genet. 2013;14(9):661-73.

Flow Chart of Study Design

Diseases: IgAN/LN

GWAS or nsSNP data available

Samples: 1100 IgAN vs 1000 Controls; 500 LN vs 500 Controls

Genetic variants (p<1*10⁻⁵) Catalogue of published GWAS and nsSNP Scan

Genetic association and genetic replication

In silico analysis

Gene annotation, eQTL, Differential gene expression analysis, Gene ontology analysis

Shared associated genes/pathways between diseases

Most of risk alleles of SLE were protective alleles for IgAN

Chr	Bp	Locus	SNP	Major	MAF case/control	Trend test	Allele OR (95%	SLE risk
				/minor	(%)	p-values	CI) by SLE risk	allele
				allele			allele*	OR
1	194953541	CFH	rs6677604	G/ <u>A</u>	4.10/7.26	8.41×10 ⁻⁶	0.55 (0.42-0.72)	1.19
1	234106500	LYST	rs9782955	<u>C</u> /T	12.87/10.71	3.31×10 ⁻²	0.81 (0.67-0.98)	1.18
3	58345217	РХК	rs6445975	<u>T</u> /G	23.79/19.79	2.01×10 ⁻³	0.79 (0.68-0.92)	1.20
6	32508322	HLA-DRA	rs9501626	C/ <u>A</u>	11.39/16.26	4.91×10 ⁻⁶	0.66 (0.55-0.79)	1.86
6	32694832	HLA-DRB1	rs9271366	A/ <u>G</u>	12.60/18.65	6.96×10 ⁻⁸	0.63 (0.53-0.75)	1.26
8	11377591	BLK	rs7812879	<u>C</u> /T	26.59/23.23	1.23×10 ⁻²	0.83 (0.72-0.96)	1.45
8	11381089	BLK	rs2254546	<u>G</u> /A	26.63/23.12	9.32×10 ⁻³	0.83 (0.72-0.95)	1.42
8	11381382	BLK	rs2736340	<u>T</u> /C	29.94/26.94	3.33×10 ⁻²	0.86 (0.75-0.99)	1.35
22	20247190	UBE2L3	rs131654	<u>T</u> /G	46.48/49.94	2.63×10 ⁻²	1.15 (1.02-1.30)	1.28
22	20269675	UBE2L3	rs5754217	G/ <u>T</u>	47.32/43.74	2.11×10 ⁻²	1.16 (1.02-1.31)	1.20

Regional analysis showed similar association

eQTL analysis indicates potential function significance

SNP (ref.)	Gene	Hap	ıls	Children siblings		
		CEU	CHB	JPT	YRI	of British descent
		(n=165)	(n=137)	(n=113)	(n=203)	(n=405)
rs6445961-A	PXK	0.27	-0.20	-0.18	0.02	/
		(4.10 ×10 ⁻³)	0.07	0.10	0.83	
rs2298428-C	UBE2L3	-0.28	-0.28	-0.43	_	-0.390
		(3.30 ×10 ⁻³)	(0.01)	(5.00×10 ⁻⁵)		(8.50 ×10 ⁻⁵)
rs6677604-A	CFH	0.12	0.02	0.26	0.11	_
		(0.22)	(0.84)	(0.03)	(0.26)	
rs9501626-A	HLA-DRA	_	_	_	_	_
rs9270984-G	HLA-DRB1	0.59	0.72	0.68	0.68	_
		(1.00 ×10 ⁻¹¹)	(1.30×10 ⁻¹³)	(1.40×10 ⁻¹²)	(4.90 ×10 ⁻¹⁶)	
rs9271366-G	HLA-DRB1	0.63	0.74	0.75	0.73	0.878
		(4.70 ×10 ⁻¹³)	(3.80 ×10 ⁻¹⁵)	(3.10 ×10 ⁻¹⁶)	(3.90 ×10 ⁻¹⁹)	(4.00 ×10 ⁻¹⁷)
rs2254546-G	BLK	0.02	-0.43	-0.51	-0.06	/
		(0.82)	(8.20 ×10 ⁻⁵)	(1.10×10 ⁻⁶)	(0.57)	

Differential gene expression analysis suggested involvement of the associated genes in IgAN

Candidate genes		Samples								
			Renal b	oiopsies		W	hole blood			
	Experiment E-GEOD-37460 Experiment E-GEOD-35489					Experiment E-GEOD-14795				
	IgAN (n=27)	Controls	р	IgAN (n=25)	Controls	р	IgAN (n=12)	Controls (n=8)	р	
		(n=27)			(n=6)					
CFH	9.41±0.94	8.95 ± 0.64	4.09×10 ⁻²	5.72 ± 0.32	5.51 ± 0.14	0.14	96.90±56.10	88.11±61.04	0.74	
HLA-DRA	11.59 ± 0.33	10.89 ± 0.54	<u>6.56×10⁻⁷</u>	9.42±0.76	8.62 ± 0.27	<u>2.56×10⁻⁴</u>	8576.43±2251.01	8638.24±2355.87	0.95	
HLA-DRB1	13.10±0.26	12.52 ± 0.51	<u>4.22×10⁻⁶</u>	11.31 ± 0.65	10.43 ± 0.28	<u>5.58×10⁻⁵</u>	16661.58 ± 5086.2	15779.10±3730.21	0.68	
							3			
PXK	—					—				
BLK	4.91 ± 0.25	4.82 ± 0.17	0.14	4.48±0.13	4.44 ± 0.13	0.53	372.31±148.09	245.60 ± 104.07	3.75×10	
UBE2L3	9.58±0.18	9.66±0.29	0.21	7.94±0.13	7.75±0.16	3.24×10 ⁻³	492.78±94.12	362.57±132.65	⁻² 1.90×10	
									-2	

Joint effects of the alleles

Number of protective alleles	Frequency (cases/controls %)	OR (95% CI)	р
<u>≤2</u>	5.4/1.9	1.00(Reference)	
3	13.5/10.3	0.46(0.25–0.83)	9.11×10 ⁻³
4	25.7/19.5	0.46(0.26–0.82)	6.68×10 ⁻³
5	26.3/25.4	0.36(0.21–0.64)	2.73×10^{-4}
6	19.0/21.4	0.31(0.18–0.55)	3.06×10^{-5}
7	6.4/13.3	0.17(0.09–0.31)	1.44×10^{-9}
<u>≥8</u>	3.7/8.0	0.16(0.08–0.31)	8.77×10^{-9}

Pathway analysis highlighted four shared pathways

Connected genes in the four pathways were also differentially expressed in renal tissues from IgAN

	Renal biopsies					
Candidate gene	Exper	iment E-GEOD-37	7460	Experi	ment E-GEOD-35	5489
	IgAN (n=27)	Controls (n=27)	р	IgAN (n=25)	Controls (n=6)	р
СЗ	9.18 ± 1.64	7.90 ± 0.66	6.11×10 ⁻⁴	8.69 ± 1.42	7.39 ± 0.22	1.54×10^{-4}
<i>CD74</i>	11.38 ± 0.21	11.14 ± 0.77	0.13	10.09 ± 0.57	9.31 ± 0.25	<u>6.69×10⁻⁵</u>
EGFR	7.16 ± 0.16	7.41 ± 0.28	2.14×10^{-4}	6.88 ± 0.13	6.95 ± 0.21	0.27
HLA-DMA	10.83 ± 0.25	10.30 ± 0.44	2.37×10^{-6}	8.45 ± 0.64	7.84 ± 0.14	<u>1.56×10⁻⁴</u>
HLA-DMB	10.78 ± 0.40	10.15 ± 0.44	1.62×10^{-6}	8.05 ± 0.52	7.65 ± 0.13	1.79×10 ⁻³
ITGAM	7.21 ± 0.80	6.42 ± 0.66	2.15×10^{-4}	4.73 ± 0.24	4.67 ± 0.15	0.59
SMAD7	8.83 ± 0.36	8.45 ± 0.38	3.65×10^{-4}	6.65 ± 0.30	7.22 ± 0.16	<u>1.17×10-4</u>
PTEN	7.20 ± 0.35	6.87 ± 0.28	3.90×10^{-4}	6.62 ± 0.18	6.45 ± 0.05	2.57×10^{-4}
EIF4E2	9.06 ± 0.32	8.55 ± 0.29	1.01×10^{-7}	7.58 ± 0.26	7.50 ± 0.22	0.51
PDIA4	9.08 ± 0.19	8.73 ± 0.20	2.16×10^{-8}	7.15 ± 0.19	6.64 ± 0.19	3.59×10 ⁻⁴
RNF144A	8.80 ± 0.33	8.44 ± 0.31	1.30×10^{-4}	6.20 ± 0.19	6.18 ± 0.09	0.77
NEDD4L	8.25 ± 0.30	8.58 ± 0.27	7.56×10^{-5}	8.43 ± 0.17	8.37 ± 0.24	0.44

IgAN-SNPs: SLE-LN

MTMR3 was identified as a novel susceptibility gene to lupus nephritis in Northern Han Chinese by shared gene analysis with IgA nephropathy, with similar risk

SNP	Chr.	Bp	Candidate	Minor	Frequency	Р	OR	OR
			Gene	Allele	(Case/Control %)		(95% CI)	in
							in LN	IgAN
rs6677604	1	194953541	CFH	А	7.36/7.45	0.94		
rs2523946	6	30049922	HLA-A	С	50.30/48.59	0.45		
rs660895	6	32685358	HLA-DRB1	G	12.60/19.01	8.97×10^{-5}	0.61 (0.48-0.79)	1.34
rs2856717	6	32778286	HLA-DQB1	Т	33.06/24.14	1.09×10^{-5}	1.55 (1.28-1.89)	0.73
rs1794275	6	32779226	HLA-DQB1	Т	14.68/12.90	0.25		
rs9275596	6	32789609	HLA-DQB1	С	29.33/20.82	1.22×10^{-5}	1.58 (1.29-1.94)	0.63
rs9357155	6	32917826	PSMB8	А	23.08/19.62	0.06	1.23	0.71
rs2071543	6	32919607	PSMB8	А	24.60/20.93	0.05	1.23	0.73
rs3129269	6	33205592	HLA-DPB2	Т	25.81/26.16	0.86		
rs2738058	8	6810195	DEFA	G	33.87/31.79	0.32		
rs3803800	17	7403693	TNFSF13	А	30.54/32.60	0.33		
rs12537	22	28753460	MTMR3	Т	25.10/29.28	3.66×10 ⁻²	0.81 (0.66-0.98)	0.78
rs9983	22	28753744	MTMR3	А	11.49/7.45	2.07×10^{-3}	1.61 (1.19-2.19)	1.18
rs2412971	22	28824371	HORMAD2	А	36.39/40.24	0.08	0.85	0.75
rs2412973	22	28859631	HORMAD2	А	36.79/40.14	0.13		

IgAN-SNPs: SLE-LN

MTMR3 associations could be replicated in Northern Han SLE

	Northern Han Chinese (878 LN vs. 556 non-LN)							
Cohort	Beijing Disco	very (5	00/240)	Beijing Replication (378/316)				
SNP	MAF	P	OR (95%	MAF	Р	OR (95%		
			CI)			CI)		
rs12537	25.10/25.21	0.96	0.99	24.14/23.95	0.94	1.01		
			(0.77-1.28)			(0.79-1.29)		
rs9983	11.49/8.40	0.06	1.42	11.45/8.74	0.09	1.36		
			(0.97-2.07)			(0.96-1.95)		

Group by	Study name		Y				
Subgroup within study		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	
Northern Han	Beijing Discovery	1.45	0.99	2.11	1.91	0.06	
Northern Han	Beijing Replication	1.36	0.96	1.95	1.71	0.09	
Northern Han		1.40	1.08	1.82	2.56	0.01	

Odds ratio and 95% CI

Rs9983 was annotated as functional by HaploReg

IgAN-SNPs: SLE-LN

Prediction of rs9983 as miRNA target

	dbSNP	Variant	Wobble Ancestral		Function	Exp	context+				
Location	ID	type	base pair	Allele	Allele	miR ID	Conservation	miRSite	Class	Support	score change
		rs9983 SNP Y G G hsa-mi hsa-mi hsa-mi hsa-mi hsa-mi hsa-mi hsa-mi				hsa-miR-3136-5p	6	gagTCAG TCAgtg	D	Ν	0.02
20422744				hsa-miR-345-5p	<u>8</u>	GAGTCA Gtcagtg	D	Ν	0.004		
	#c0093		hsa-miR-4439	<u>6</u>	gagTCAG TCAgtg	D	Ν	0.029			
50425744	189965		SINF Y	G	G	hsa-miR-4513	<u>6</u>	gaGTCAG TCAgtg	D	Ν	-0.058
						hsa-miR-6855-3p	<u>6</u>	gaGTCAG TCAgtg	D	Ν	-0.026
						hsa-miR-6857-3p	<u>6</u>	gagTCAG TCAgtg	D	Ν	0.02

e-SNPs for MTMR3 showed genotype-expression correlations, esp. rs9983

IgAN-SNPs: SLE-LN

Rs9983 eQTL effect could be replicated by different databases

Study	Population	Tissue	Number	Effect	P value
MRCA	UK 405 siblings	LCL	405	-0.32	4.36×10 ⁻⁹
MRCE	UK 550 siblings	LCL	550	-0.41	1.14×10 ⁻⁹
Blood eQTL	Multiple	Non-transformed peripheral blood	5311	NA	1.28×10 ⁻¹⁰⁰
MuTHER	Twin-A	Fat	74/82	0.23/0.24	0.04/0.02
	Twin-L	LCL	76/84	-0.06/ 0.27	0.64/ 0.02
	Twin-S	Skin	79/87	0.10/ 0.29	0.37/ 7.70×10 -3
НарМар	CEU	LCL	109	0.04	0.70
	CHB	LCL	80	-0.05	0.64
	GIH	LCL	82	-0.27	0.016
	JPT	LCL	82	-0.10	0.39
	LWK	LCL	82	-0.08	0.50
	MEX	LCL	45	-0.04	0.81
	MKK	LCL	138	0.02	0.84
	YRI	LCL	108	0.00	0.97

MTMR3 mRNA expressions were down regulated in glomeruli

• LN (5.92 \pm 0.15 versus 6.18 \pm 0.17; p = 5.94×10⁻⁶;

32 LN patients versus 14 controls)

IgAN(6.42±0.14 versus 6.74±0.34; p = 9.64×10⁻⁵;
27 LN patients versus 27 controls)

Summary

We identified shared alleles/pathway but with different effect between IgAN and LN

Chr	Locus	SNP	Allele OR by SLE risk allele in	SLE risk allele OR
			IgAN	
1	CFH	rs6677604	0.55	1.19
1	LYST	rs9782955	0.81	1.18
3	РХК	rs6445975	0.79	1.20
6	HLA-DRA	rs9501626	0.66	1.86
6	HLA-DRB1	rs9271366	0.63	1.26
8	BLK	rs2254546	0.83	1.42
22	UBE2L3	rs5754217	1.16	1.20
22	MTMR3	rs9983	1.18	1.40

Ann Rheum Dis. 2011;70(7):1330-7 Arthritis Rheum. 2012;64(1):222-31 Clin J Am Soc Nephrol. 2014;9(4):788-97 Arthritis Rheumatol. 2014;66(10):2842-8 Arthritis Rheumatol 2015 Epub 27

OPFN

Extended report

Ann Rheum Dis 2011;70:1330-1337.

Genetic association of *PRDM1-ATG5* intergenic region and autophagy with systemic lupus erythematosus in a Chinese population

Xu-jie Zhou,^{1,2} Xiao-lan Lu,³ Ji-cheng Lv,^{1,2} Hai-zhen Yang,⁴ Lian-xiang Qin,^{1,2} Ming-hui Zhao,^{1,2} Yin Su,³ Zhan-guo Li,³ Hong Zhang^{1,2}

ARTHRITIS & RHEUMATISM Vol. 64, No. 1, January 2012, pp 222–231 DOI 10.1002/art.33318 © 2012, American College of Rheumatology

Received 9 September 2013

SUBJECT AREAS:

DISEASE GENETICS END-STAGE RENAL DISEASE

Article

Clin J Am Soc Nephrol 9: 788-797, 2014.

Cumulative Effects of Variants Identified

by Genome-wide Association Studies in

Xu-Jie Zhou, Yuan-Yuan Qi, Ping Hou, Ji-Cheng Lv, Su-Fang Shi, Li-Jun Liu, Na Zhao & Hong Zhang

Association of Systemic Lupus Erythematosus Susceptibility Genes with IgA Nephropathy in a Chinese Cohort

IgA Nephropathy

Xu-Jie Zhou, Fa-Juan Cheng, Li Zhu, Ji-Cheng Lv, Yuan-Yuan Qi, Ping Hou, and Hong Zhang

Gene–Gene Interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in Systemic Lupus Erythematosus

Xu-jie Zhou,¹ Xiao-lan Lu,² Swapan K. Nath,³ Ji-cheng Lv,¹ Sai-nan Zhu,⁴ Hai-zhen Yang,⁴ Lian-xiang Qin,¹ Ming-hui Zhao,¹ Yin Su,² International Consortium on the Genetics of Systemic Lupus Erythematosus, Nan Shen,⁵ Zhan-guo Li,² and Hong Zhang¹

Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 153132, 7 pages http://dx.doi.org/10.1155/2015/153132

ARTHRITIS & RHEUMATOLOGY Vol. 66, No. 10, October 2014, pp 2842–2848 DOI 10.1002/art.38749 © 2014, American College of Rheumatology

Research Article

Detecting Genetic Associations between ATG5 and Lupus Nephritis by *trans*-eQTL

Yue-miao Zhang,¹ Fa-juan Cheng,^{1,2} Xu-jie Zhou,¹ Yuan-yuan Qi,¹ Ping Hou,¹ Ming-hui Zhao,¹ and Hong Zhang¹

BRIEF REPORT

Identification of *MTMR3* as a Novel Susceptibility Gene for Lupus Nephritis in Northern Han Chinese by Shared-Gene Analysis With IgA Nephropathy

Xu-jie Zhou,¹ Swapan K. Nath,² Yuan-yuan Qi,¹ Fa-juan Cheng,¹ Hai-zhen Yang,³ Yan Zhang,⁴ Wanling Yang,⁴ Jian-yang Ma,⁵ Ming-hui Zhao,¹ Nan Shen,⁶ and Hong Zhang¹

We have some progression, But we still have to do a lot

- ◇ 周绪杰 博士
- 永 赵明辉 教授
- 🔹 吕继成 主任医师
- → 于 峰教授
- 朱 厉 副研究员
- 、 刘立军 副教授
- 🔹 师素芳 副教授
- 齐媛媛 博士
- 永 程法娟 博士
- ♦ 张月苗 博士
- 《 侯 平 主管技师

北京大学人民医院风湿免疫科

- * 栗占国 教授
- ∻穆荣教授
- ◆ 李 春 主治医师
- ◇ 陆小兰 博士
- ◆ 美国哥伦比亚大学
 - ♦ Ali Gharavi 教授
 - ✤ Krzysztof Kiryluk 博士
- ◆ 美国美国俄克拉荷马州大学
 - ✤ Swapan K. Nath 教授